ID: 2015-04-24-A-5031 Краткое сообщение

Урусова А.И., Андреев Д.А.

Экспериментальное обоснование эффективности сочетанного действия низкоинтенсивного лазерного излучения и наночастиц металлов

ГБОУ ВПО Саратовский ГМУ им. В.И. Разумовского Минздрава России, кафедра оперативной хирургии и топографической анатомии

Резюме

Цель: изучить выраженность антимикробного действия наночастиц меди, низкоинтенсивного лазерного излучения и их сочетанного применения в эксперименте in vitro.

Материал и методы. В 256 исследованиях по подбору дозы и способов применения нанопорошка меди оптимальным признан объем 0,2 мл в концентрации 1000,100,10 мкг/мл. В 52 исследованиях определены оптимальные параметры лазерного аппарата «Матрикс»: МЛО1КР, частота — 80 Гц, мощность излучения - 15 мВт, длина волны - 630 нм, время облучения - 2 минуты. Исследование проводили в отношении культур Pseudomonas aeruginosa и Staphylococcus aureus ($3*10^5$ КОЕ/мл). В первой серии применяли НИЛИ. Во второй серии суспензии нанопорошков меди опытных концентраций. В третьей серии сочетали облучение лазером и внесение наночастиц меди.

Результаты и обсуждение. Через 1 и 2 часа после лазерного облучения отмечалось снижение количества колоний опытного штамма, однако, на 3 часе рост возобновлялся. Концентрации нанопорошков меди (1000 – 10 мкг/мл) вызывали резкое сокращение количества микробных клеток уже в первые часы контакта с культурой при полном подавлении роста через 3 часа. Сочетание лазерного облучения с опытными концентрациями нанопорошков через 3 часа полностью подавляло рост микроорганизмов.

Заключение. Концентрации нанопорошков меди вызывают резкое сокращение количества Pseudomonas aeruginosa и Staphylococcus aureus уже в первые часы. НИЛИ не обладает достаточно эффективным антибактериальным действием. Выявленный синергизм наночастиц меди и НИЛИ позволяет получить антибактериальный эффект при более низких концентрациях наночастиц меди.

Ключевые слова: лазерное излучение, наночастицы меди, эксперимент

Введение

Экспериментальное обоснование эффективности применения лазерных нанотехнологий является актуальной задачей клинической медицины. При этом, лазерная медицина как прогрессивное направление медицинской науки наиболее точно оценила свое предназначение для экспериментальных исследований [3,4,5]. Антиинфекционные механизмы действия НИЛИ отмечены во многих исследованиях [1,2]. При изучении антимикробного влияния установлено, что наибольшими бактерицидными свойствами обладают наночастицы меди в концентрации 1 мг/мл, многие наночастицы токсичны и представляют потенциальную опасность для организма [6,7]. Однако, работ, оценивающих сочетанную антиинфекционную активность НИЛИ и наночастиц металлов в экспериментах исследованиях до настоящего времени не проводилось.

Цель: изучить выраженность антимикробного действия наночастиц меди, низкоинтенсивного лазерного излучения и их сочетанного применения в эксперименте in vitro.

Материал и методы

В ходе проведенного эксперимента проведено 256 исследований направленных на подбор дозировок и способов применения нанопорошка меди. Оптимальной признана дозировка 0,2 мл в концентрации 1000, 100, 10 мкг/мл в виде суспензии. Наночастицы меди помещали в стерильные пробирки известной массы для удобства дальнейшего получения стерильных суспензий заданных концентраций. В результате проведенных 52 исследований с применением лазерного аппаратом АЛТ «Матрикс», тип МЛО1КР нами определены параметры, пригодные для его использования, как изолированно, так и в сочетании с нанопорошком меди: частота — 80 Гц, мощность излучения - 15 мВт, длина волны - 630 нм.

Исследование антибактериального действия сочетанного применения наночастиц меди и НИЛИ. Выраженность антимикробного действия синтезированных наночастиц меди и НИЛИ в отношении Pseudomonas aeruginosa и Staphylococcus aureus оценивали бактериологичесикми методами. Использовали стандартизированную по оптическому стандарту мутности МакФарланда суспензию микроорганизмов, полученную смешением суточных культур Pseudomonas aeruginosa и Staphylococcus aureus (по $9*10^8$ КОЕ/мл). Полученную суспензию поэтапно разводили стерильным физиологическим раствором хлорида натрия до концентрации $3*10^5$ КОЕ/мл.

В первой серии экспериментов культуру микроорганизмов облучали 2 минуты аппаратом «Матрикс» в режиме: частота — 80 Гц, мощность излучения - 15 мВт, длина волны - 630 нм, время облучения - 2 минуты. Во второй серии в культуру микроорганизмов вносили по 0,2мл суспензии нанопорошков меди с конечными концентрациями 1000, 100, 10 мкг/мл. В третьей серии сочетали облучение лазером и внесение наночастиц меди. Статистическую обработку полученных результатов осуществляли с применением пакета прикладных статистических программ Statistica 8.0 и Microsoft Excel 2007. Статистические результаты считались достоверными при р≤0,05.

Результаты

В результате работы установлено, что на первом этапе исследования полученные количества выросших колоний сразу после посева существенно не отличались от контроля. Эксперимент 1-й серии. Через 1 и 2 часа культивирования после лазерного облучения отмечалось снижение количества колоний опытного штамма до 99 ± 2.3 и 1212 ± 4.2 (p<0.05) соответственно, однако, на третьем часе рост Pseudomonas aeruginosa и Staphylococcus aureus возобновлялся.

Эксперимент 2-й серии. Через 24 часа инкубации при 37[°]С высеянных на чашки Петри микроорганизмов, предварительно культивированных 1 час в присутствии ультрадисперсного порошка меди опытных концентраций 1000; 100 и 10 мкг/мл, отмечалось достоверное снижение количества колоний до 423±60,0; 1540±325 и 2446±530, соответственно, по сравнению с контролем, где отмечался рост в виде газона (сплошной рост). Подобная тенденция сохранялась через 2 и 3 часа культивирования. Нанопорошок меди в концентрации 1 мкг/мл не оказывал влияния на рост опытных культур.

Третья серия экспериментов. Сочетание лазерного облучения с опытными концентрациями нанопорошков 1000; 100 и 10 мкг/мл через 1 час культивирования привело к еще большему снижению количества клеток до 34±10; 125±24 и 2267±149 с последующим отсутствием колоний уже на 2 часу культивирования в концентрации 1000 и 100 мкг/мл нанопорошка меди. Через 3 часа рост отсутствовал в концентрациях меди 1000; 100 и 10 мкг/мл, как при воздействии облучения, так и без него.

Обсуждение

Эффективность действия лазера констатирована только в течение одного часа. Антибактериальные свойства изолированного НИЛИ признаны недостаточно эффективными. В ходе исследования было показано, что опытные концентрации нанопорошков меди (1000 – 10 мкг/мл) вызывают резкое сокращение количества микробных клеток Pseudomonas aeruginosa и Staphylococcus aureus уже в первые часы контакта с культурой при полном подавлении роста через 3 часа воздействия. Выявлен синергизм антимикробного действия сочетанного использования наночастиц меди и низкоинтенсивного лазерного излучения при воздействии на культуры Pseudomonas aeruginosa и Staphylococcus aureu.

Заключение

Имеется определенный потенциал антиинфекционного применения наночастиц меди. При оценке результата второй серии эксперимента установлено, что опытные концентрации нанопорошков меди (1000 – 10 мкг/мл) вызывают резкое сокращение количества микробных клеток Pseudomonas aeruginosa и Staphylococcus aureus уже в первые часы контакта с культурой при полном подавлении роста через 3 часа воздействия. Установлены параметры применения НИЛИ, в ходе проведенных экспериментов получены результаты, которые свидетельствуют, что изолированное применение НИЛИ не обладает достаточно эффективным антибактериальным действием. В итоге эксперимента выявлен синергизм антимикробного действия сочетанного использования наночастиц меди и низкоинтенсивного лазерного излучения при воздействии на культуры Pseudomonas aeruginosa и Staphylococcus aureus, что позволяет получать антибактериальный эффект при более низких (менее 1 мкг/мл) концентрациях наночастиц меди.

Литература

- 1. Алипов В.В. Экспериментальные лазерные нанохирургические технологии. Первые результаты и перспективы. / В.В. Алипов [и др.] // Вестн. Экспер. и клин. хир.- 2011.- №2.- С. 330-333.
- 2. Alipov V.V. Lazer nanotechnology in experimental surgery. International Kongress «EuroMedica 2012».-Hannover. 2012::22-23.
- 3. Николенко В.Н., Алипов В.В. Перспективные нанотехнологии в области экспериментальной медицины. / В.Н. Николенко, В.В. Алипов // Нанотехника. 2009.- № 19.- С. 66-68.
- 4. Патент РФ № 2475251 от 06.02.2012 г. «Способ комбинированного лечения абсцессов в эксперименте» Авторы: Алипов: В.В., Лебедев М.С., Доронин С.Ю., Шаповал О.Г., Алипов Н.В., Лебедева Е.А.
- 5. Патент РФ № 2472232 от 24.03.2011 г. «Способ моделирования термической ожоговой раны кожи у лабораторных животных». Авторы Колсанов А.В., Алипов В.В., Добрейкин Е.А.
- 6. Bystrzejewska-Piotrowska G., Golimowski J. and Urban P. L. Nanoparticles: Their potential toxicity, waste and environmental management Waste Management. 2009: 2587–2595.
- 7. Nishimori H., Kondoh M., Isoda K., Tsunoda S.-I., Tsutsumi Y. and Yagi K. Silica nanoparticles as hepatotoxicants. European Journal of Pharmaceutics and Biopharmaceutics .2009; 496–501.